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Abstract—Accurate Health Usage and Monitoring System
(HUMS) for military vehicle batteries is an important enabler for
ensuring mission effectiveness and optimising vehicle Through
Life Support (TLS). This paper reviews a switched battery
system that is typical of some military vehicles and develops two
approaches for constructing a diagnostic observer to evaluate
battery health; a constrained Extended Kalman Filter (EKF)
approach and a Moving Horizon Estimator (MHE) approach.
These two approaches are implemented and evaluated against
data from a test bench emulating a military vehicle battery
system. Both approaches were successful in detecting faults in the
dataset, with the performance of both the MHE and EKF near
identical. The MHE was capable of having a tighter tolerance on
the residual and therefore is more sensitive to faults; However,
this was not evident in our results due to the severity of our
degraded batteries not exploiting this difference in sensitivity.
The MHE approach provides a more natural way to describe the
Fault Detection and Isolation (FDI) system, but the EKF performs
sufficiently and is both computationally simpler to implement
and execute. It was also noted that faulty batteries could only
be detected so long as there was an adequate stimulus applied
to the system. As such the development of a probing signal to
stimulate the system in periods of low stimulus would provide
regular assessments of battery health.

I. INTRODUCTION

Fault Detection and Isolation (FDI) in battery systems is
an important capability for modern vehicles. This need is
prevalent in vehicles with electric and hybrid electric drives
[1]. Health estimation in battery systems is also of impor-
tance for the power industry for the storage of energy from
renewable sources. Such systems contribute to ensuring a
reliable power supply uninterrupted by faults. The storage
and retrieval of energy in secondary batteries has become
ubiquitous as electronics and their energy demands have
become integrated into all aspects of society. This growth of
embedded electronics has also been seen in military vehicles
over the years. These growing electrical demands have largely
been due to the modernisation of equipped Command Control
Communications Computers Intelligence Surveillance and
Reconnaissance (C4ISR) systems supporting Network-Centric
Warfare (NCW) [2]. As such, military vehicles exhibit a need,
just as electric vehicles do, for robust battery systems to
support these energy demands.
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A failure in a battery for a military vehicle can lead to
its inability to complete its mission, and potentially strand
its occupants. Due to the varying nature of vehicle use
and mission profile, engine hours is typically not a reliable
indicator of battery health. Accurate health and monitoring
of military vehicle batteries is thus an important enabler for
ensuring mission effectiveness and optimising vehicle Through
Life Support (TLS).

This paper explores the application of Fault Detection to
a lead-acid switched battery system similar to those used on
some military vehicles. The approach taken in this paper was
to build a diagnostic observer based FDI system utilising an
Equivalent Circuit Model (ECM). Two diagnostic observer
approaches were constructed and compared, an Extended
Kalman Filter approach and a Moving Horizon Estimation
approach. These two observers were then implemented and
their performance was evaluated against a dataset generated
from a Test Bench representing the vehicle battery system.

This paper is organised into the following Sections: Section
I, an introduction. Section II details the switched battery
system and the ECM constructed. Section III details the design
of the diagnostic observer approaches. Section IV details the
implementation of the diagnostic observers. Section V detail
the results of the diagnostic observers and their effectiveness.
Section VI provides concluding remarks from this paper.

II. BATTERY MODEL

With the modernisation of military assets to support
Network-Centric Warfare (NCW) [3], military vehicles are
being increasingly equipped with modern Command Con-
trol Communications Computers Intelligence Surveillance
and Reconnaissance (C4ISR) systems. This places strenuous
demands on their power systems that weren’t originally en-
visioned during platform acquisition. These C4ISR systems
enable military vehicles to reach greater mission effectiveness
but also places a risk on their availability due to early degrada-
tion and reduced performance of the vehicles battery system.
It is thus necessary to provide accurate health monitoring
of military vehicle battery systems to mitigate these risks
imposed by the power demands of modern C4ISR systems.
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Fig. 2. Battery Equivalent Circuit Model (ECM)

An example of a battery system found on some military
vehicles is given in Fig. 1. This is the system configuration
assumed for the purposes of developing an Fault Detection
and Isolation (FDI) system. This battery system comprises of
two lead-acid battery banks, each featuring two batteries in
series to provide 24V. A 27V alternator provides power to
the main systems when the engine is on and the isolators
connected. This system is capable of being isolated into
eight configurations due to the presence of the three isolator
switches. These isolator switches do not report their position
status.

The crank battery is used to power the starter motor for
cranking and power vehicle dash electronics. The system
battery is used to power the C4ISR systems on the vehicle. The
crank battery and system battery can be connected in parallel
via an isolator switch which provides additional battery capac-
ity to the C4ISR systems and provides power to the system
battery from the alternator.

There are typically two approaches for modelling a battery;
an Electrochemical approach that relies on chemical laws and
dynamics for describing battery behaviour, or an Equivalent
Circuit approach that instead relies on electrical laws and
dynamics to describe battery behaviour. The modelling ap-
proach chosen for this paper was an ECM. This approach
has been used numerously in the literature with successful
results [1], [4], [5]. There are many variations on how an
ECM for a battery is constructed, including simple voltage
source / resistance models, RC network models and Thevinen
equivalent models [6].

The ECM chosen for modelling the lead-acid battery was a
Thevinen equivalent model (shown in Fig. 2). This ECM com-
prises of a function F,(SoC) that models the electromotive
force, a resistor R that models the voltage response to current

draw, and an RC network (R, C,) that models the time
dependant transients and voltage losses due to polarisation [7].

The electromotive force E, is a piecewise nonlinear func-
tion based on State of Charge (SoC) and derived from the
formulation given by Plett [8].
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Constructing the dynamic equations for the ECM we apply
Kirchoff’s laws.
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Where V), is the voltage across the RC network, R, and
Cp are the resistance and capacitance respectively of the
polarisation effects in the battery, R is the internal battery
resistance, F, is the open circuit voltage, V' is the terminal
voltage and ¢ is the battery current.

To construct the SoC model, we use the current integration
method which is a common approach amongst battery mod-
elling literature. The method is straight forward and reliable
given accurate current measurements and the availability of
re-calibration points [9]. These recalibration points should
be used in periods of sustained zero current draw where
terminal voltage most accurately represents E,(SoC). This
enhancement was not implemented in this paper but is a
recommended addition to a production implementation.

U

S=5, C

Where i(t) is the current, S, is the initial SOC, C,, is the

nominal battery capacity and 7; is the coulombic efficiency,

which is typically n; = 1 for discharge and 7; < 1 for charge.

We now have the dynamic Equations (1), (2) and (3) for the

ECM which can be approximated in discrete state space form

using the Euler Method and a timestep At. Process noise wy
and sensor noise v have also been added to the model.

i(t) dt (3)

Tpy1 = f(@p, ur)
Yk = h(zp, ur) 4)

f(wp,up) = Az + Buy, + wy
h(zg, ur) = Eo(xr(2)) — Rug — x(1) + vy, (5)

wy, = N(0,Q)
U = N(O, R) (6)
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The variance for the sensor noise R was estimated from
the noise characteristics of the voltage sensor used in the
test bench for data collections. The variance of the process
disturbances ) was used as a design parameter and tuned for
the model to provide a balance between stability and fault
sensitivity.

ITI. DIAGNOSTIC OBSERVER

Model based FDI utilises our understanding of physical
phenomena and exploits analytical redundancy to generate
accurate evaluations of system health. Through describing sys-
tems via dynamic models we can monitor this nominal model
against the real system performance. Deviations between the
nominal model and the actual system can then be used to
infer system faults. The general scheme for model-based fault
detection and diagnosis is given by Isermann [10]. The scheme
used for this paper is shown in Fig. 3.

Diagnostic observers employ an estimator to generate fea-
tures used for monitoring system faults [11]. Commonly this is
a comparison between the estimated output given the dynamic
model, versus the actual measured output of the system. The
subtracted difference between these two signals is termed the
residual. When the residual diverges past a threshold you
can infer that a fault in the system has occurred given an
adequately robust dynamic model.

Two Diagnostic Observers are compared in this study for an
effective FDI system. One method employs a Moving Horizon
Estimator (MHE) to generate the residual for the Battery
System, whilst the other method employs an Extended Kalman
Filter (EKF) to generate the residual. A comparison between
the two methods are then presented in Section V.

A. Moving Horizon Estimator

MHE has become a powerful technique for state estimation
of dynamic systems in the presence of disturbances, non-
linearities and constraints. A MHE solves the estimation prob-
lem by optimising a cost function derived from the dynamic
model defined over a sliding window. The sliding window
bounds the computation cost of solving the optimisation prob-
lem over an infinite time horizon. The cost function is typically
comprised of two contributions, an arrival cost that summarises

previous data and a prediction error that encapsulates the
system dynamics over the defined time horizon. This cost
function is then minimised with respect to a set of constraints
resulting in a state estimate of the system for the given time
horizon [12].

A MHE approach for our Battery System Diagnostic Ob-
server is attractive due to its ability to readily incorporate
constraints, such as constraining the SoC between its defined
values, and voltage lost (V) due to polarisation based on
our physical knowledge of batteries. Using our system model
definition given by Equations (1), (2) and (3), we can define
a MHE as follows for our Battery System.
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Where Zp_pn is the arrival prediction estimated in the
previous timestep k—1. P is a weighting matrix penalising the
distance in the arrival cost from the previous sliding window
estimate. Through out this paper, given a symmetric positive
definite matrix M and a vector z; ||z||apy £ (27 Mz)(1/2),
The constraints placed on SoC is due to its definition, being
between 0 and 1, and its update is constrained to the coulomb
counting method defined in Equation 3. Errors accumulated
over time due to the coulomb counting method can be cor-
rected using regular recalibration points for the SoC. The
constraint placed on V), the voltage lost due to polarisation
effects, has been determined based on nominal polarisation
dynamics of the lead-acid batteries used in this Battery System
[7].

With the above formulation, we can implement a diagnostic
observer based on a MHE approach. Implementation of this
diagnostic observer is given in Section IV.

B. Extended Kalman Filter

A common approach to developing a diagnostic observer
is to use a Kalman Filter. In this paper we used an EKF to
account for nonlinearities in the output equation h(xy,uy).
With respect to our model, we define our state space system
as follows using Equations (1), (2) and (3). Given a model in
this form we can implement an EKF [13] as follows.

First we initialise the filter:

»%K = E[zo]

P} = E(zo — i ) (a0 — i])"] (10)



For k =1,2,3,... we calculate the following.
(a) Compute the time update for both the state estimate and
the estimation error covariance as follows:
&), = A&, + Bujp_y
P; = AP} (AT + Qi1 (1)

(b) Compute the following partial derivative matrices:

oh
Hk — aix i;
oh
My = 5 . 12)

(c) Compute the measurement update of the state estimate and
the estimation error covariance as follows:

Ly = Py HI (H,P, HE + My Ry M])™1
Ty =&y + Li[ye — h(@y , ur)]

Pt = (I — LiHy)P; (13)

With the above formulation, we can implement a diagnostic
observer based on an EKF approach. However, it is beneficial
to apply similar constraints described from the MHE approach
(9) to the EKF based on our knowledge of the system. Such
constraints facilitate the detection of faults by constraining the
model output to a nominal case and ensuring the EKF doesn’t
converge to states inconsistent with our physical understanding
of the system.

We know that the SoC changes slowly with time and would
like to limit the rate of change of this state variable so that it
is appropriately proportional to the current draw on the battery
system. To achieve this we set the covariance of the process
noise () near zero such that we place absolute trust in the
model time update and disregard the sensor contribution to
the SoC. This ensures the SoC updates exactly according to
the coulomb counting method (Equation 3). This however will
result in the SoC possibly diverging from a correct internal
state over time. This is a common limitation with such an
approach and is resolved using recalibration points to correct
the SoC.

We know based on the definition of SoC and the physical
limitations of the polarisation effects [7] we can apply hard
state constraints to ensure our model is constrained to a
realistic operating region.

(d) Apply hard constraints on state estimates using the
projection approach [14]:

I~ = argming_ (%i*THx* — 2T HE™) (14)
such that
(25 . [V f25
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1 0
n=|y 1] (16)

Setting the weighting matrix H = I is equivalent to projecting
the unconstrained state to the limits Cj, and C,;. This allows

TABLE I
DATASET RELAY PROGRESSION

Relay 1 Relay 2 Relay 3 Time (s)

OFF OFF OFF 0

ON OFF OFF 120

OFF ON OFF 240

OFF OFF ON 360

OFF ON ON 480

ON ON OFF 600

ON OFF ON 720

ON ON ON 840

OFF OFF OFF 960

OFF OFF OFF 1080

TABLE II
TEST BENCH DATASETS
Battery Bank 1 Battery Bank 2
Dataset ID | Battery 1 Battery 2 Battery 1 Battery 2

1 Healthy Healthy Healthy Healthy
2 Healthy Faulty Healthy Healthy
3 Healthy Healthy Healthy Faulty
4 Healthy Healthy Faulty Faulty
5 Faulty Faulty Healthy Healthy

for a practical implementation to instead saturate the states at
the limits Cy, and C\p, avoiding the need to solve an opti-
misation problem. This reduces the computational complexity
significantly. An implementation of an EKF based diagnostic
observer using these equations is given in Section IV.

IV. IMPLEMENTATION

To implement and evaluate the two respective approaches
for FDI on the Battery system a representative test bench was
constructed. The test bench design is representative of the
military vehicle battery system given in Figure 1. The test
bench uses a variable electronic load to represent the system
load, and a variable power supply to represent the alternator.
Relays have been used to act as the Isolator switches and are
controlled electronically.

A relay progression was designed to stimulate the test bench
into the eight possible connection configurations and is given
in Table I. Healthy and faulty batteries where switched out
in between tests to generate five sets of data. The faulty and
healthy batteries in each set of data is given in Table II. This
data set has been used to compare the performance of our two
Diagnostic Observers.

The faulty batteries used in the test data collection were ones
which had been demonstrated to be incapable of accepting and
storing sufficient charge.

A. Moving Horizon Estimator

Constructing the MHE diagnostic observer using the formu-
lation in (9) we arrive at Algorithm 1.

Algoirthm 1 has been implemented in MATLAB using
YALMIP [15] using the fmincon nonlinear solver and exe-
cuted against the data described in Table II with results on the
diagnostic observers performance given in Section V.



Algorithm 1 MHE Diagnostic Observer

1: procedure EVALUATE BATTERY HEALTH
2 for k = N+1, N+2, N+3, N+4, ... do

3 if Uninitialised then

4 SoC = E=1(V},)

5 Vp7k =0

6: end if

7 Solve argming, . ®(ZTr_N, Yip—N:k})
8 T(f) =Y. — h(fk,uk)

9: if |7(t)| > ~ then

10: Brougr =1

11: end if

12: if Z(Bfn,ult,k_Z;k)/Z == 1 then
13: Report Battery Fault

14: end if

15: end for

16: end procedure

Algorithm 2 EKF Diagnostic Observer
1: procedure EVALUATE BATTERY HEALTH
2: if k = O then
3 Li'g = E(mo)
4 5ty = El(zo — #7) (w0 — 7))
5: end if
6: for k = 1,2,3,... do
7
8
9

(%, P] = EKF(#;_,, up—1)
if £, > Cy; then

: T =Cuw
10: else if I, < Cp then
11: fﬁ; = Clb
12: else
13: =i,
14: end if
15: Tk = Yk — h(fﬁ, uk)
16: if |7(t)| > ~ then
17: Bfault,k =1
18: end if
19: if Z(Bfault,ku:k)/Z == 1 then
20: Report Battery Fault
21: end if
22: end for

23: end procedure

B. Extended Kalman Filter

We have constructed the EKF using the formulation in
Section III-B in Algorithm 2.

This algorithm was implemented in Matlab and run against
the data described in Table II with results on the diagnostic
observers performance given in Section V.

V. RESULTS

Running the diagnostic observers detailed in Section III over
the dataset defined in Table II we obtained the results listed
in Table III for fault detection.

TABLE III
DIAGNOSTIC OBSERVER RESULTS
MHE EKF

Dataset| Detection Missed Detection Missed
ID Rate Detection Rate Detection

Rate Rate
1 N/A N/A N/A N/A
2 65.94% 34.06% 65.75% 34.25%
3 33.13% 66.87% 33.13% 66.87%
4 99.60% 0.40% 99.59% 0.41%
5 99.60% 0.40% 99.60% 0.40%

For the control test data (Dataset ID 1) both Diagnostic
Observers successfully estimated the system state and recorded
no Faults. As we then progressed through increasingly faulty
configurations of the switched battery system our detection
rate improved. The model inferred battery faults through the
battery’s inability to both accept and deliver charge due to
its degraded state. This led to a lesser current being drawn
by the faulty battery which resulted in a drop in our nominal
voltage, causing a discrepancy between model and actual. This
discrepancy leads to a non zero residual.

We were able to successfully detect battery faults given
adequate stimulus to the battery system. We observe that the
performance between the MHE diagnostic observer and the
EKF diagnostic observers are close to identical for all cases.

It is important to note that without the implementation of
hard constraints, the performance of the EKF was unsatis-
factory as the model incorrectly converged to unrepresentative
internal states. This is due to the battery model being incapable
of reconciling the internal state into anything meaningful given
sensor data from a faulty battery. This was seen in datasets
4 and 5 where the polarisation voltage V,, became arbitrarily
large in an attempt to reconcile the faulty battery data. Without
the application of a hard constraint on the EKF, the residual
will not deviate due to a faulty battery.

Alternatively, a tolerance could instead be applied to the
internal state V), in line with the physical bounds for the po-
larisation voltage but the implementation of a hard constraint
is trivial as shown in Section IV-B. This allows us to be
consistent with the approach for FDI as shown in Figure 3.

We also compared the EKF and MHE diagnostic observers
for sensitivity to faults by comparing the residuals and how
tight the tolerance 7y can be set. The log values of the residuals
for both diagnostics observers were plotted in Figure 4. We can
see from this comparison that the MHE diagnostic observer
can have an overall tighter tolerance . The MHE tolerance
can be set to v = e~®>! = 0.0061 versus a tolerance for
the EKF of v = ¢=%2 = 0.0149. Thus the MHE diagnostic
observer is more sensitive to faults, given an accurate estimate
of SoC is achieved. This didn’t show in our results due to the
faulty batteries used in the test bench being so severe that they
weren’t on the threshold to see a difference between the MHE
and EKF diagnostic observers.

A general observation we can make is that the diagnostic
observers perform worse when attempting to detect a single
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Fig. 4. Residual analysis between EKF and MHE on Dataset 1

faulty battery in a bank whilst connected in parallel with a
healthy battery, but not the alternator. This is due to the healthy
battery not providing an adequate potential difference to ex-
pose the faulty battery’s inability to accept charge, along with
the Healthy battery masking the faulty battery by providing
the required charge given a connected load. This is observed
through the lower detection rates in Dataset IDs 2 and 3. The
temporal performance of the diagnostic observers is given in
Figure 5. Here we can observe that the EKF outperforms the
MHE by two orders of magnitude, which is to be expected
given the differences in computational complexity. Given that
the ability to detect a battery fault is dependant on having
adequate stimulus to excite the system to compare against the
nominal model, it would be advisable to regularly poll the
batteries and measure their response for performance during
periods of low current draw. This provides a routine estimation
of battery health and would provide superiour fault detection
in the case of inadequate system stimulus. By polling the
batteries during no current draw, this opens the paradigm for
designing an optimal probe signal to stimulate the battery
adequately to provide maximum information for the evaluation
of its health. Such an approach has been used successfully for
fault detection in other systems [16].

VI. CONCLUSION

Diagnostic observers were successfully implemented using
both an MHE approach and an EKF approach for the bat-
tery system described in Figure 1. We found that the MHE
approach is slightly more accurate and allows for a tighter
tolerance on residual, but a constrained EKF has near identical
performance in our test cases and provides a much simpler
approach both computationally and in implementation for FDI
in this battery system.
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